China wholesaler BPW Axle Germany Axle Trailer Axle Semi-Trailer Axle axle examples

Product Description

Basic Info.

Model NO.
BPW12T 14T 16T                                                                                 Certification: ISO
Material    :Steel                                                                                    Type: Rear Axles
Brake Size: 420X180 420X200 420X220                                              Capacity:  12t 14t 16t
Scale:  Heavy Duty                                                                                Components: Trailer Axles
Load Capacity:  14ton                                                                           Transport Package: in Bulk
Specification: SGS                                                                                 Trademark: JLB
Origin: Shandogn HangZhou                                                                     HS Code:87169000
Production Capacity: 10000sets/Month

Packaging & Delivery

Package Size
180.00cm * 50.00cm * 50.00cm
Package Gross Weight
350.000kg
Germany type axle, Agriculture axle, Mechanical suspension……  Fitted for multifarious mechanical spare parts……..
 

Product Parameters                        
GERMANY TYPE AXLE SPECIFICATIONS  
AXLE TYPE  BRAKE SIZE WHEEL FIXING    NO.XSIZE OF WHEEL STUD (DIM A)    WHEEL REG.DIA.(DIM B)  DIM D     MIN WHEEL SIZE  BEAM SIZE    TRACK LENGTH(DIM C)    AXLE CAPACITY    SPRING SEAT INSTALLATION  WEIGHT   
 KMD1218I  420X180   ISO  10xM22x335   281  711.5  20´´  square150  1840mm  12T  ≤450  370KG  
 KMD1218J  420X180  JAP   8xM20x285   221  711.5  20´´  square150  1840mm  12T   ≤450  370KG  
 KMD1220I  420X200   ISO  10xM22x335   281  721.5  20´´  square150  1840mm  13T   ≤450  397KG  
 KMD1418I  420X180   ISO  10xM22x335   281    733  20´´  square150  1840mm  14T   ≤450  400KG  
 KMD1420I  420X200   ISO  10xM22x335   281  743  20´´  square150  1840mm  14T   ≤450  417KG  
 KMD1618I  420X180   ISO  10xM22x335   281  723  20´´  square150  1870mm  16T   ≤450  450KG  
 KMD1620I  420X200   ISO  10xM22x335   281  733  20´´  square150  1870mm  16T   ≤450  459KG  
 KMD1622I  420X220   ISO  10xM22x335   281  733  20´´  square150  1870mm  16T   ≤450  465KG  

We Can Supply Many Kinds of Axle, Germany Axle 12ton, 14ton 16ton.
Product Features
1. Special heat-treat, low-alloy steel axle beam, it has the vitues of good synthetic performanc, strong load ability and lower self weight.
2. High quality alloy solid inserted spindle, through wholy heat treatment, provide superior fatigue capability.
3. High performance premium non-asbestos brake linings, extend service life.
4. Easy for ABS installation
5. Camshaft, matching with special seals, can ensure no entry of the grease into the brake drum, more safety.
6. New tight fit hub cap have O rings, high property for sealing.
7. Grease lubrcant is supplied by Mobil that lengthens the time of free maintenance.
8. Full range of stud fixing such as ISO. BSF and JAP, it can meet the requirements of various wheel rims.

 

/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

What are the symptoms of a failing CV joint, and how does it relate to the axle?

A CV (constant velocity) joint is an essential component of the axle assembly in many vehicles. When a CV joint starts to fail, it can exhibit several symptoms that indicate potential problems. Here’s a detailed explanation of the symptoms of a failing CV joint and its relationship to the axle:

Symptoms of a Failing CV Joint:

1. Clicking or popping sounds: One of the most common signs of a failing CV joint is a clicking or popping sound when making turns. This noise usually occurs during tight turns and may indicate worn-out or damaged CV joint bearings.

2. Grease leakage: A failing CV joint may leak grease, which can be seen as dark-colored grease splattered around the CV joint or on the inside of the wheel. Grease leakage is typically caused by a cracked or damaged CV joint boot, which allows the lubricating grease to escape and contaminants to enter.

3. Excessive vibration: A worn-out CV joint can cause vibrations, especially during acceleration. The vibrations may be felt in the steering wheel, floorboards, or even the entire vehicle. These vibrations can become more noticeable as the CV joint deteriorates further.

4. Difficulty in turning: As the CV joint wears out, it may become difficult to turn the vehicle, especially at low speeds or when making sharp turns. This symptom is often accompanied by a clicking or popping sound.

5. Uneven tire wear: A failing CV joint can lead to uneven tire wear. If the CV joint is damaged or worn, it can cause the axle to wobble or vibrate, resulting in uneven tire tread wear. This can be observed by visually inspecting the tires and noticing uneven patterns of wear.

Relationship to the Axle:

The CV joint is an integral part of the axle assembly. It connects the transmission to the wheels and allows smooth power delivery to the wheels while accommodating the up-and-down motion of the suspension. The axle shaft is responsible for transmitting torque from the transmission to the CV joints and ultimately to the wheels.

Axles contain one or more CV joints, depending on the vehicle’s drivetrain configuration. In front-wheel drive vehicles, each front axle typically has two CV joints, one inner and one outer. Rear-wheel drive and all-wheel drive vehicles may have CV joints on both the front and rear axles.

The CV joint consists of a joint housing, bearings, and internal ball bearings or rollers. It is protected by a rubber or thermoplastic CV joint boot, which seals in the grease and protects the joint from contaminants. When the CV joint fails, it can affect the axle’s ability to transmit power smoothly and result in the symptoms mentioned above.

Regular inspection and maintenance of the CV joint and axle assembly are crucial to identify and address any issues promptly. If any of the symptoms mentioned earlier are observed, it is recommended to have the vehicle inspected by a qualified mechanic to determine the exact cause and perform necessary repairs or replacements.

axle

What are the factors to consider when choosing an axle for a custom-built vehicle?

Choosing the right axle for a custom-built vehicle is crucial for ensuring optimal performance, durability, and safety. Here are several key factors to consider when selecting an axle for a custom-built vehicle:

  1. Vehicle Type and Intended Use:
  2. Consider the type of vehicle you are building and its intended use. Factors such as vehicle weight, power output, terrain (on-road or off-road), towing capacity, and payload requirements will influence the axle selection. Off-road vehicles may require axles with higher strength and durability, while performance-oriented vehicles may benefit from axles that can handle increased power and torque.

  3. Axle Type:
  4. Choose the appropriate axle type based on your vehicle’s drivetrain configuration. Common axle types include solid axles (live axles) and independent axles. Solid axles are often used in heavy-duty applications and off-road vehicles due to their robustness and ability to handle high loads. Independent axles offer improved ride quality and handling characteristics but may have lower load-carrying capacities.

  5. Weight Capacity:
  6. Determine the required weight capacity of the axle based on the vehicle’s weight and intended payload. It’s crucial to select an axle that can handle the anticipated loads without exceeding its weight rating. Consider factors such as cargo, passengers, and accessories that may contribute to the overall weight.

  7. Axle Ratio:
  8. Choose an axle ratio that matches your vehicle’s powertrain and desired performance characteristics. The axle ratio affects the torque multiplication between the engine and wheels, influencing acceleration, towing capability, and fuel efficiency. Higher axle ratios provide more torque multiplication for improved low-end power but may sacrifice top-end speed.

  9. Braking System Compatibility:
  10. Ensure that the chosen axle is compatible with your vehicle’s braking system. Consider factors such as the axle’s mounting provisions for brake calipers, rotor size compatibility, and the need for an anti-lock braking system (ABS) if required.

  11. Suspension Compatibility:
  12. Consider the compatibility of the chosen axle with your vehicle’s suspension system. Factors such as axle mounting points, suspension geometry, and overall ride height should be taken into account. Ensure that the axle can be properly integrated with your chosen suspension components and that it provides sufficient ground clearance for your specific application.

  13. Aftermarket Support:
  14. Consider the availability of aftermarket support for the chosen axle. This includes access to replacement parts, upgrade options, and technical expertise. A robust aftermarket support network can be beneficial for future maintenance, repairs, and customization needs.

  15. Budget:
  16. Set a realistic budget for the axle selection, keeping in mind that high-performance or specialized axles may come at a higher cost. Balance your requirements with your budget to find the best axle option that meets your needs without exceeding your financial limitations.

When choosing an axle for a custom-built vehicle, it’s recommended to consult with knowledgeable professionals, experienced builders, or reputable axle manufacturers. They can provide valuable guidance, assist in understanding technical specifications, and help you select the most suitable axle for your specific custom vehicle project.

<img src="https://img.hzpt.com/img/axles_shaft_coupling_Spline/spline_shaft_l1.webp" alt="China wholesaler BPW Axle Germany Axle Trailer Axle Semi-Trailer Axle axle examples”><img src="https://img.hzpt.com/img/axles_shaft_coupling_Spline/spline_shaft_l2.webp" alt="China wholesaler BPW Axle Germany Axle Trailer Axle Semi-Trailer Axle axle examples”>
editor by lmc 2024-11-04